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Utilize earth abundant, low cost elements with minimal 

environmental impact as battery materials.

Exploit magnesium due to ~1,000X higher natural abundance 

than lithium and ~5,000X higher abundance than lead.  

Motivation

This project targets some 

unique needs of large scale 

power storage:

1) reduced cost

2) low environmental impact

3) scalability

4) reversibility

5) capacity retention

Mg Li Pb

ionic radius, Å 0.72 0.76 1.19

melt. pt.,oC 650 181 328

mAh/g 2205 3862 259

mAh/cc 3837 2047 2926

$/lb $1.12 $28 $1.68

$/kWh $2.5 $58 $31



Approach to Mg Battery System
The necessity of systems level understanding

Negative Electrode Positive Electrodes

Electrolyte

Liquid, non-corrosive

Electrode- Electrolyte 
Interfaces

Interactions

M. Huie, D. Bock, E. Takeuchi, A. Marschilok, K. Takeuchi

Coord. Chem. Rev. 287 (2015) 15-27. Invited.  



X-ray powder diffraction pattern 

of MgxV2O5 (x = 0.11, 0.18) 

schematic of MgxV2O5 structure

Ion exchange

Sol gel reaction 

Two-Step Synthesis

MgxV2Oy was prepared by a 

two-step scalable process 

where the first step was a ion 

exchange reaction of MgV2O6

followed by a sol gel reaction.

S. Lee, R. DiLeo, A. Marschilok, K. Takeuchi, E. Takeuchi, 

ECS Electrochem. Lett., 2014, 3(8), A87-A90.

Cathode: Mg0.1V2Oy•1.8H2O
Material synthesis 



Cathode: Mg0.1V2Oy•1.8H2O 
Results of voltammetry: significant solvent effect

De-solvation energy of Mg2+ in EC, DEC, PC > CH3CN

Slow scan voltammetry at 1E-4 V/s. 

working = Mg0.1V2O5 , reference = Ag/Ag+, auxiliary = Pt. 

0.1M (a) Mg(ClO4)2 or (b) Mg(TFSI)2

CH3CN EC:DMC (30:70)

S. Lee, R. DiLeo, A. Marschilok, K. Takeuchi, E. Takeuchi, 

ECS Electrochem. Lett., 2014, 3(8), A87-A90.



Cathode: MgxV2O5•nH2O
Galvanostatic cycling in Mg electrolyte

Mg0.11V2O5·2.35H2O can deliver ~140 mAh/g in 0.5 M Mg(TFSI)2.

Capacity increased in the first cycles, then stable at ~140 mAh/g.

Mg0.11V2O5·2.35H2O capacity > Mg0.18V2O5·2.35H2O

J. Yin, A. Marschilok, K. Takeuchi, E. Takeuchi

In preparation for publication



XRD pattern of Mg-birnessite
with standard index 

Precipitation

Ion exchange

Two-Step Synthesis

Mg-birnessite was prepared by a 

two-step scalable process 

room temperature precipitation 

reaction for Na-birnessite

followed by ion exchange

Cathode: Mg-birnessite
Low cost, low toxicity source materials

monoclinic phase (space group C 2/m)

a=5.050 Å, b=2.846 Å, c=7.054 Å, b=96.63°

Pink, Mn; Red, O; Yellow, Mg; Blue, H2O.

J. Yin, A. Marschilok, K. Takeuchi, E. Takeuchi

Submitted for publication



a)  

Cathode: Mg-birnessite
Cyclic voltammetry in Mg electrolyte, new electrolyte

working = Mg-birnessite , reference=Ag/Ag+, 

Electrolyte: 0.4 M Mg(TFSI)2 acetonitrile, water content: Mg/water=1/6

Electrolyte: 
0.4 M Mg(TFSI)2 and 0.5M 
Dipropylene glycol dimethyl ether 
(Dipro glyme) in Acetonitrile

Glyme with higher boiling point and 
lower toxicity than many ethers
Provides improved Mg2+ coordination 
and improved performance

Patent disclosure filed



Cathode: Mg-birnessite
Cyclic voltammetry in Mg electrolyte: impact of water

working = Mg-birnessite ,reference=Ag/Ag+.

Electrolyte: 0.4 M Mg(TFSI)2 and 0.5M 

Dipropylene glycol dimethyl ether in 

Acetonitrile with added water

Best Ratio : Mg2+ /H2O = 1/6

1st cycle

1.0 mV/s

1st cycle

0.5 mV/s

1st cycle

0.1 mV/s



Cathode: Mg-birnessite
Galvanostatic cycling in Mg electrolyte

working = Mg-birnessite , reference=Ag/Ag+, Electrolyte: 0.4 M Mg(TFSI)2

and dipropylene glycol dimethyl ether, acetonitrile, water content: 

Mg/water=1/6 .  Begins to stabilize at ~ 80 mAh/g.

Current: 0.2 C 



Tunnel structured Manganese Oxide 

MxMn8O16 M = Ag, K

Ag-OMS-2: 

Ag1.22Mn8O16∙2.90H2O

K-OMS-2:

K0.68Mn8O16∙0.88H2O

Low temperature, scalable, aqueous based syntheses



Cathode: MxMn8O16 M = Ag, K
Cyclic voltammetry in Mg electrolyte

0.5 M Mg(TFSI)2 and 0.5 M dipropylene glycol dimethyl ether in acetonitrile

Improved reversibility with water in electrolyte  Mg2+/ H2O = 1/6

Ag1.22Mn8O16 K0.68Mn8O16

J. Huang, A. Poyraz, A. Marschilok, K. Takeuchi, 

E. Takeuchi, Submitted for publication



Cathode: Ag-OMS-2
Galvanostatic cycling in water containing electrolyte

The capacity of initial cycles is > 150 mAh/g

Stabilizes at ~ 80 mAh/g

Voltage versus Mg is 2.6 V



Cathode: K-OMS-2
Galvanostatic cycling in water containing electrolyte

Higher initial capacity (250 mAh/g)

Capacity stabilizes >150 mAh/g

High coulombic efficiency

Voltage versus Mg is 2.6 V

Low cost material



Mg-ion Hybrid Electrolytes: non-flammable
Ionic Liquid Name Abbreviation

1-Methyl-1-Propyl-Piperidinium bis(trifluoromethylsulfonyl)imide 1M1PPi-TFSI

1-Butyl-1-Methyl-Piperidinium bis(trifluoromethylsulfonyl)imide 1B1MPi-TFSI

1-Ethyl-1-Methly-Pyrrolidinium bis(trifluoromethylsulfonyl)imide 1E1MPyrr-TFSI

1-Methyl-1-Propyl-Pyrrolidinium bis(trifluoromethylsulfonyl)imide 1M1PPyrr-TFSI

1-Butyl-1-Methyl-Pyrrolidinium bis(trifluoromethylsulfonyl)imide 1B1MPyrr-TFSI

1-Ethyl-3-Methyl-Imidazolium bis(trifluoromethylsulfonyl)imide 1E3MIm-TFSI

1-Methyl-3-Propyl-Imidazolium bis(trifluoromethylsulfonyl)imide 1M3PIm-TFSI

1-Butyl-3-Methyl-Imidazolium bis(trifluoromethylsulfonyl)imide 1B3MIm-TFSI

1-Ethyl-3-Methyl-Pyridinium  bis(trifluoromethylsulfonyl)imide 1E3MPy-TFSI

1-Propyl-3-Methyl-Pyridinium  bis(trifluoromethylsulfonyl)imide 1P3MPy-TFSI

1-Butyl-3-Methyl-Pyridinium  bis(trifluoromethylsulfonyl)imide 1B3MPy-TFSI

PyrrolidiniumPiperidinium

Pyridinium

Bis(trifluoromethylsulfonyl)imide

Imidazolium

Combine ionic liquids 

with co-solvents.  IL 

provides safety, co-

solvent improves 

conductivity.  

• Acetonitrile (ACN)

• Di(propylene glycol) 

dimethyl ether

M. Huie, C. Cama, A. Marschilok, K. Takeuchi, E. Takeuchi

In preparation for publication



Hybrid IL-Acetonitrile Electrolytes
Conductivity

IL No Salt 0.5 M salt % IL

1E1MPyrr-TFSI 46 27 40

1M1PPyrr-TFSI 44 27 40

1M1PPi-TFSI 39 25 40

1E3MPy-TFSI 46 29 40

1P3MPy-TFSI 42 26 40

1E3MIm-TFSI 50 26 40

1M3PIm-TFSI 45 25 40

Conductivity (mS/cm)

Max conductivity at 40% IL

Unsaturated cations and 

smaller ring size → Better 

conductivity

0.5 M Mg(TFSI)2 decreases 

conductivity ~50%



Hybrid IL-DPGME Electrolytes
Conductivity

IL No Salt 0.5 M salt % IL

1M1PPyrr-TFSI 5.5 2.5 60

1M1PPi-TFSI 4.1 1.9 60

1P3MPy-TFSI 5.4 2.5 60

Conductivity (mS/cm)

About less conductive than 

ACN solutions

Unsaturated cations and 

smaller ring size → Better 

conductivity

0.5 M Mg(TFSI)2 decreases 

conductivity



Hybrid IL Electrolytes
Voltage Window of Stability

IL/Acetonitrile IL/DPGME

0.5 M Mg(TFSI)2

All electrolytes >3.0 V window of stability for 0.1 

mA/cm2 limit

Saturated cation ring → larger window



Hybrid IL Electrolytes
Cathode: Mg0.07V2O5

IL/Acetonitrile IL/DPGME

Electrolyte Eox (V) Ered (V) Δ(Eox-Ered) Iox (mA/g) Ired (mA/g)

1M1PPi-TFSI/Acetonitrile 1.00 -0.38 1.38 83.9 -60.3

1M1PPi-TFSI/DPGME 0.20; 0.74 0 0.20; 0.74 7.5; 7.8 -4.3

Acetonitrile 0.80 -0.05 0.85 43.5 -32.8

DPGME → Lower current, less polarization

IL/acetontrile → Higher peak current



Scanning Electron Microscopy (SEM) of

CNT (L) & Bismuth-coated CNTs (R).

CNT substrate

Bi Deposition 

Bi-CNT was prepared by 

electrodepostion of Bi on CNTs

Enables use of new electrolytes

Capacity ~ 180 mAh/g.

Anode: electrodeposited Bi
Bi on CNT substrate

R. DiLeo, Q. Zhang, A. Marschilok, K. Takeuchi, and E. Takeuchi, 

Electrochem Lett. 4 (1) A10-A14 (2015).  

X-ray powder 

diffraction of Bi on CNT



Summary

High voltage cathode systems that function in non-corrosive Mg2+ 

electrolyte demonstrated. Scalable, low temperature syntheses.

Mg0.1V2Oy >140 mAh/g 

MgxMnOy ~ 80 mAh/g

MxMn8O16 M = Ag, K ~150 mAh/g

Cathode

Bi tunable electrodeposition based preparation on CNT substrate

>180 mAh/g in non-corrosive Mg2+ electrolyte

Anode

H-IL hybrid ionic liquid-Mg salt non-flammable electrolytes with 

appropriate conductivity, and voltage window for Mg based system

Electrolyte
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